

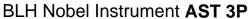
available with certification • EAC

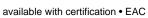
General information

PAVONESYSTEMS

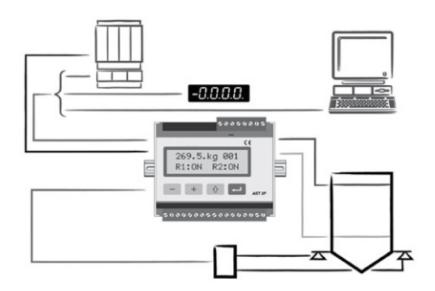
The weight transmitter AST 3P is a BLH NOBEL weighing instrument that guarantees high performance. It has been designed for applications with strain gage transducers that can convert the output of connected load cells into a very stable signal suitable for PC or PLC. The set up procedure and the calibration of the AST 3P BLH NOBEL weighing instrument are easy to set up. ART 3P may also have 2 digital inputs as optionals (24 Vdc/ac 6mA).

BLH Nobel Instrument AST 3P


available with certification • EAC


Technical specifications

PWS6220250903


Full scale non-Linearity:	< 0.005 %
Display:	LCD display with backlight 2 x 16 character
Internal Resolution:	8300000 counts
Temperature range:	-10 ÷ +50 °C
Storage temperature:	- 25°C ÷ + 85°C
Filter:	0.05 ÷ 75 Hz
Rated output RO:	±3.3 mV/V
Serial port:	RS485 2 or 4 isolated wires 500 V
Analog optional output:	Isolated 16-bit bipolar D/A converter
Analog output Non-Linearity:	< 0.01 %
Power supply:	24 Vcc ±20%
Maximum supply voltage:	$8.8 \div 5.5 \text{ Vdc} (1 \div 8 \text{ transducers } 350 \text{ Ohm, isolated } 500 \text{V})$
Baud rate:	< 115.2 kbaud
Conversion speed:	0.5 ÷ 300Hz, accuracy 0.015 %
Fieldbus:	Modbus RTU or ASCII
Analog output current:	0-20mA, ±20mA, 4-20mA, 12-20mA
Analog output offset drift:	< 0.35 mV/°C - < 0.7 micro A/°C
Analog output Load Data:	min 500 Ohm, max 500 Ohm
Analog output voltage:	0-10 or ±10 Vdc
Analog output Gain Drift:	< 0.003 % full scale/°C
Analog output Accuracy:	0.04 %
Isolation:	Digital inputs common with power supply. Other parts - 500 V
Gain drift:	< 0.0015 % Full scale
Offset drift:	< 0.04 microV/°C
Power consumption:	7W

All indicated data may be changed without notice.

